A Pericellular Collagenase Directs the 3-Dimensional Development of White Adipose Tissue

نویسندگان

  • Tae-Hwa Chun
  • Kevin B. Hotary
  • Farideh Sabeh
  • Alan R. Saltiel
  • Edward D. Allen
  • Stephen J. Weiss
چکیده

White adipose tissue (WAT) serves as the primary energy depot in the body by storing fat. During development, fat cell precursors (i.e., preadipocytes) undergo a hypertrophic response as they mature into lipid-laden adipocytes. However, the mechanisms that regulate adipocyte size and mass remain undefined. Herein, we demonstrate that the membrane-anchored metalloproteinase, MT1-MMP, coordinates adipocyte differentiation in vivo. In the absence of the protease, WAT development is aborted, leaving tissues populated by mini-adipocytes which render null mice lipodystrophic. While MT1-MMP preadipocytes display a cell autonomous defect in vivo, null progenitors retain the ability to differentiate into functional adipocytes during 2-dimensional (2-D) culture. By contrast, within the context of the 3-dimensional (3-D) ECM, normal adipocyte maturation requires a burst in MT1-MMP-mediated proteolysis that modulates pericellular collagen rigidity in a fashion that controls adipogenesis. Hence, MT1-MMP acts as a 3-D-specific adipogenic factor that directs the dynamic adipocyte-ECM interactions critical to WAT development.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

بررسی امکان استفاده از آنزیم‌های مختلف جهت استخراج سلول‌های بنیادی مزانشیمی از بافت چربی انسانی

Abstract Background: Adipose tissue is being used word-wide as a suitable adult stem cell source the aim of this study was to examine the possibility of using different enzymes to isolate the human mesenchymal stem cells from adipose tissue. Methods: Adipose tissues which were obtained from liposuction surgery were transferred to the laboratory under sterile conditions. All samples obtained...

متن کامل

Genetic Link Between Obesity and MMP14-Dependent Adipogenic Collagen Turnover

OBJECTIVE In white adipose tissue, adipocytes and adipocyte precursor cells are enmeshed in a dense network of type I collagen fibrils. The fate of this pericellular collagenous web in diet-induced obesity, however, is unknown. This study seeks to identify the genetic underpinnings of proteolytic collagen turnover and their association with obesity progression in mice and humans. RESEARCH DES...

متن کامل

The Role of Inflammation and Changes of Adipose Tissue-Resident Immune Cells in Increasing the Risk of Cancer: A Narrative Review

The incidence of obesity, as a major health problem, has increased significantly over the past decades. This condition is associated with an increased risk of cancers, type 2 diabetes, and cardiovascular diseases. The current study aimed to investigate the effects of inflammation and changes of adipose tissue-resident immune cells on increasing the risk of cancer in obese individuals. In obesit...

متن کامل

Mesenchymal Stem Cells Derived from Rat Epicardial Versus Epididymal Adipose Tissue

Objective(s) Some investigation has indicated that adipose-derived stem cells possess different surface epitopes and differentiation potential according to the localization of fat pad from which the cells were derived. In the present study proliferation capacity and aging of such cells were explored. Materials and Methods Adherent cells were isolated from the collagenase digests of adipose tiss...

متن کامل

Complementary roles of intracellular and pericellular collagen degradation pathways in vivo.

Collagen degradation is essential for cell migration, proliferation, and differentiation. Two key turnover pathways have been described for collagen: intracellular cathepsin-mediated degradation and pericellular collagenase-mediated degradation. However, the functional relationship between these two pathways is unclear and even controversial. Here we show that intracellular and pericellular col...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Cell

دوره 125  شماره 

صفحات  -

تاریخ انتشار 2006